Bilag 6.10

Kjærgaard, C. 2018. Indlæg ved faglig workshop den 10. december 2018 ved Ringe

Drænvirkemidler og landskabsfiltre til reduktion af N og P Visioner for den målrettede indsats

Charlotte Kjærgaard, Chefforsker Miljø, SEGES, E-mail: chkj@seges.dk

Workshop Ringe den 10. december 2018

SEGES

Vådområder som naturlige landskabsfiltre - før og nu

Jensen, P.N. (Ed.) 2017. Estimation of Nitrogen Concentrations from root zone to marine areas around year 1900. Aarhus University, DCE-Danish Centre for Environment and Energy, 126 pp. Scientific Report No. 241. <u>http://dce2.au.dk/pub/SR241.pdf</u>

SEGES

Vision for den målrettede indsats – (gen)etablere filtre i landskabet

Riparisk lavbund - ådalen

Minivådområder - højbund

Primære kilder til fosfortab – virkemidler skal målrettes tabsveje

Potentialekortet – prioritering af vådområder og drænvirkemidler

Potentielt egnet til minivådområde

Kjærgaard et al. 2017. Kortlægning af potentielle områder til etablering af konstruerede minivådområder. DCA – Nationalt Center for Fødevarer & Jordbrug.

Charlotte Kjærgaard, 101218

Ripariske (vandløbsnære) lavbundsarealer

Ripariske lavbundsarealer udgør overgangszonen mellem højbund og vandmiljø

Højbund

Dronefoto: SEGES

Ripariske (vandløbsnære) lavbundsarealer

SEGES

Kjærgaard, C. & Hørfarter R. 2018. Potential significance of of riparian lowlands on nitrogen fluxes from agricultural drainage in Danish wate Generation Beneration Beneratio Beneration Beneration Beneration Beneration Beneration B

Vådområdepotentialet i Norsminde Fjord oplandet

Arealer egnet til vådområder og minivådområder

ID15 oplande	Egnet minivådområde (%)	Opland til riparisk lavbund (%)	Riparisk lavbund		
43600028	61		16		
43600041	50	33	11		
43600042	75	11	2,5		
43600043	61	22	6,2		
43600051	73	1,1	0,9		
43602599	72	5,4	1,1		
Total	4.815 (63)	1.224 (16)	541 (7)		
	1	Ļ	1		
Area	l egnet	Riparisk lavbund			
minivådområde (vådområde, afbrudte di					

Kjærgaard, C., Hoffmann, C.C., Iversen, B.V. 2017. Filtre i landskabet øger retentionen. I: Filtre i landskabet, Vand & Jord, nr. 3, s. 106-110

Riparisk lavbund – afbrudte dræn i skræntfoden langs en ådal

SEGES

Petersen, R.J., Prinds, C., Iversen, B.V., Engesgaard, P., Jessen, S., Kjærgaard, C. Submitted. Nitrogen reduction along variable flow pathways in riparian lowland transects. Submitted Water Res. Research

Lavbundsarealers effekt (nye resultater fra TReNDS www.trends.nitrat.dk)

N og P tab fra vådbundsarealer

- Tab af organisk N fra -20 til -161 kg N/ha/år (86-99% som overfladetransport / exfiltration)
- Tab af fosfor fra -8,5 til -83 kg P/ha/år (bestemt af strømningsvej og Fe_{BD}:P_{BD} ratio)

Petersen, R.J., Prinds, C., Iversen, B.V., Engesgaard, P., Jessen, S., Kjærgaard, C. Submitted. Nitrogen reduction along variable flow pathways in riparian lowland transects. Submitted Water Res. Research

Våbundsarealers effekt udfordrer vores vidensgrundlag

Deloplandets kvælstofbalance

- Samlet N-transport vandløb: 2910 kg/år (15,9 kg/ha/år)
- *In situ* N-tab lavbund: 2549 kg/år (88%)
- N-udledning landbrugsareal: 2,4 kg/ha/år

Deloplandets fosforbalance

- Samlet P-transport vandløb:
- Drænbidrag landbrugsarealer
- *In situ P*-tab lavbund:

145 kg/år 49 kg/år 96 kg/år (66%)

SEGES

Petersen, R.J., Prinds, C., Iversen, B.V., Engesgaard, P., Jessen, S., Kjærgaard, C. Submitted. Nitrogen reduction along variable flow pathways in riparian lowland transects. Submitted Water Res. Research

Charlotte Kjærgaard, 101218

Målrettede drænvirkemidler

Drænvirkemidler er målrettet dræntransport og reducerer N og/eller P i drænvand

Dronefoto: SEGES

Forudsætning for anvendelse af drænvirkemidler

• Afgrænsning af det hydrologiske opland til dræn (udfordring på potentielt egnede arealer)

SEGES

Forudsætning for anvendelse af drænvirkemidler

• Kendskab til hydrologiske belastning samt N- og P-transport via dræn

Målrettede drænvirkemidler tilpasset landskabet

Minivådområder

Randzonen (IBZ, mættet randzone)

Mættede randzoner? 30-90% N (?); ?% P

Kompakte drænbrønds P-filtre

P-sorbent filtre

Potentiale af drænvirkemidler

Tabel 1a. Effekt på kvælstofudledningen (kg N pr ha pr år) og arealkrav (ha) til virkemidler i forhold til 2021 og 2027# målsætningen med den nuværende reguleringen (2019). (# estimat)

		ID15	Virkemiddelseffekt	Nuværende N-effekt	Arealkrav ved
		N-indsatskrav	i rodzonen	på udledningen	nuværende regulering
	Målår	kg N år⁻¹	kg N ha⁻¹ år⁻¹	kg N ha ⁻¹ år ⁻¹	ha
Efterafgrøder	2021	2.594	30	11,4	228
	2027	3.791			333
Udtagning	2021	2.594	50	19,0	137
	2027	3.791			200
Minivådområder	2021	2.594	13,5	6,75	384 (3,84)*
	2027	3.791			562 (5,62)*
Matrice-	2021	2.594	27	13,5	192 (0,38)*
minivådområder	2027	3.791			281 (0,56)*

Beregningerne foretages for et typisk dræn domineret ID15 opland på 1500 ha med 70% dyrket areal svarende til 1050 ha landbrugsareal. Den gennemsnitlige kvælstofudvaskning fra rodzonen er på 60 kg N ha⁻¹ og gennemsnitlige kvælstofretention for ID15 oplandet er på 62%.

Økonomisk potentiale drænvirkemidler

Tabel 4. Omkostninger ved målopfyldelse med den nuværende (2019) regulering for de fire virkemidler hhv. efterafgrøder, udtagning, minivådområder og matriceminivådområder for indsatsårene 2021 og 2027#

		Omkostning	ID15	Omkostning	Udbredelsesareal	Omkostning ved
		virkemiddel	arealkrav	ID15 opland	arealkrav	udbredelsesaralkrav
	Indsatsår	kr ha⁻¹ år⁻¹	ha	kr år⁻¹	ha	Mio kr år⁻¹
Efterafgrøder	2021	700	228	159.250	195.000	137
	2027	700	333	232.750	285.000	200
Udtagning	2021	4000	137	546.000	117000	468
	2027	4000	200	798.000	171.000	684
Minivådområder	2021	650*	384 (3,84)*	249.744	329.333	214
	2027	650*	562 (5,62)*	365.011	481.333	313
Matrice-	2021	380**	192 (0,38)*	73.002	164.667	63
minivådområder	2027	380**	281 (0,56)*	106.696	240.667	92

*Omkostning ved minivådområder er opgjort som etableringsomkostninger afskrevet over 10 år

** Omkostningen ved matriceminivådområder er opgjort som etableringsomkostninger afskrevet over 5 år (excl. tilførsel af ny flis)

Vi udnytter ikke potentialet !

Målrettet regulering på ID15-skala (Højberg et al., 2015)

Målrettet indsats indenfor ID15-oplande

SEGES

Foto: Lene Gadegaard

SEGES

		Virkemiddelspotentia	ale uden ID15-målretning	Virkemiddelspotentiale med ID15-målretning		
	Målår	Nuværende N-effekt på udledningen kg N ha ⁻¹ år ⁻¹	Arealkrav ved nuværende regulering ha	Målrettet effekt på udledningen kg N ha ⁻¹ år ⁻¹	Arealkrav ved målrettet indsats ha	
Efterafgrøder	2021	11,4	228	20,8	125	
	2027		333	19,2	197	
Udtagning	2021	19,0	137	43,0	60	
	2027		200	41,2	92	
Minivådområder	2021	6,75	384 (3,84)*	10,9	238 (2,4)*	
	2027		562 (5,62)*	10,6	356 (3,6)*	
Matrice-	2021	13,5	192 (0,38)*	23,6	110 (0,22)*	
minivådområder	2027		281 (0,56)*	23,5	161 (0,32)*	

Økonomisk potentiale

Omkostninger ved målopfyldelse med 2019-reguleringen og en differentieret målrettet indsats for fire virkemidler hhv. efterafgrøder, udtagning, minivådområder og matriceminivådområder for 2021 og 2027

	Indsatsår	Omkostning virkemiddel kr ha ⁻¹ år ⁻¹	ID15 arealkrav ha	Omkostning ID15 opland kr år⁻¹	ID15 arealkrav ha	Pris ID15 opland kr år⁻¹
Efterafgrøder	2021	700	228	159.250	125	87.309
	2027	700	333	232.750	197	138.091
Udtagning	2021	4000	137	546.000	60	240.240
	2027	4000	200	798.000	92	367.920
Minivådområder	2021	650*	384 (3,84)*	249.744	238 (2,4)*	154.666
	2027	650*	562 (5,62)*	365.011	356 (3,6)*	231.511
Matrice-	2021	380**	192 (0,38)*	73.002	110 (0,22)*	33.102
minivådområder	2027	380**	281 (0,56)*	106.696	161 (0,32)*	61.354

*Omkostning ved minivådområder er opgjort som etableringsomkostninger afskrevet over 10 år

** Omkostningen ved matriceminivådområder er opgjort som etableringsomkostninger afskrevet over 5 år

Hvor er der især behov for forbedret viden

Kvælstof

- Indregning af lokal N-retention for riparisk lavbund (naturbidrag fra lavbund)
- Operationelle modeller for lokal drænafstrømning /transport
- Terrænnær N-retention

Nyt GUDP-projekt (T-REX): Terrænnær redox og retentionskortlægning til differentieret målrettet virkemiddelsindsats indenfor ID15 oplande (2019-2021), GEUS, AU-Geoscience, Ejlskov, SEGES

Fosfor

- Differentiering af primære kildebidrag indenfor ID15 oplande (lavbund, brinkerosion, dræn)
- Omkostningseffektive P-drænvirkemidler (partikel og sorbent-filtre)
- Management ift vådbundsarealer

